
braulio Documentation
Release 0.3.0

José María Domínguez Moreno

Apr 06, 2020

Contents

1 User’s Guide 3
1.1 Foreword . 3
1.2 Usage . 4
1.3 Configuration . 8
1.4 Installation . 12
1.5 History . 13

i

ii

braulio Documentation, Release 0.3.0

Welcome to this documentation. This tool aims to help with the release process of your project by handling versioning
and changelogs for you. Please read the foreword section before installing and using it.

Contents 1

braulio Documentation, Release 0.3.0

2 Contents

CHAPTER 1

User’s Guide

1.1 Foreword

This is a brief introduction about how this tool works and what it can do, so you can know if it is right for your project.

1.1.1 How it works

Braulio walks through all commits of your Git project and classifies them to determine what should be the next version
and generate a proper changelog. To do so, it collects only Commits that follow a given message convention.

Release steps:

• Determine the current version.

• Collect unreleased changes.

• Classify them by type and scope.

• Determine the new version.

• Generate the changelog.

• Update files with the new version string.

• Commit and tag.

1.1.2 Version schema

This tool works with the major.minor.patch version scheme and most of the features of Semantic Versioning 2.0 are
supported. If you use Calendar Versioning or another version schema, this tool is not for you.

It works with final releases as well as pre-releases, although you have to configure the stages of your project first.

3

https://semver.org/#semantic-versioning-200
https://calver.org

braulio Documentation, Release 0.3.0

PEP440 dictates how pre-release segments should look. This tool does not enforce anything about the pre-release
segment format, but you can configure it to fit PEP440.

1.1.3 Changelog

The changelog is generated using the subject extracted from the commit messages. The output is in ReStructuredText
format and can not be customized at this moment.

1.1.4 Project Status

This is still in development, and things may change, but you can give it a try if you want.

1.2 Usage

1.2.1 Releasing a new version

To perform a new release use the release subcommand:

$ brau release

You can let the tool determine the new version for you or do a manual version release.

Releasing a pre-release version.

To start a pre-release series, Braulio needs a little bit of your help.

Suppose you want the stages of your project to be dev, beta and final, all of them compatible with PEP440. Go first
and set them up.

Now, let’s suppose the current version of your project is 1.6.3 and you want to start working on a new feature, the
next version should be 1.7.0. So to release that version into the dev stage run:

$ brau relase --minor --stage=dev

or using the –bump option:

$ brau relase --bump=1.7.0dev0

From that point, each time you pass dev to –stage, the numerical part of the pre-release segment will be increased.

$ brau relase --stage=dev

The current version is now 1.7.0.dev1, if you run it again the version will be 1.7.0.dev2 and so on.

When you are ready to release your first beta version, just do it like this:

$ brau relase --stage=beta

The current version is now 1.7.0b0. The numerical part of pre-release segments always starts from 0.

Finally to release the final version, just run the command without any argument.

4 Chapter 1. User’s Guide

https://www.python.org/dev/peps/pep-0440/#pre-releases

braulio Documentation, Release 0.3.0

$ brau relase

Braulio knows that the project is currently in a pre-release stage of the version 1.7.0 and will release that final
version correctly.

1.2.2 How the current version is found

The application will look for the last Git tag that matches tag_pattern option, unless current_version is provided by
the user either via command line or a configuration file.

1.2.3 How the next version is determined

If you follow the Commit Message Convention defined for your project, Braulio will be able to know what type of
changes introduces each commit and based on that determine what should be the next version.

This table shows what type of commit determines the type of release:

Release type Commit message metadata
Major release Commits containing the phrase BREAKING CHANGE
Minor release feat type commits.
Patch release fix, refactor or any other commit type, including those that doesn’t follow the convention.

Right now, only the types feat and fix are relevant when deciding which version will be the next.

1.2.4 Manual version bump

There are 4 options through the command line interface; –patch, –minor, –major and –bump.

Let’ supose your current project version is 1.6.3.

Option Usage
–patch $ brau release --patch releases to 1.6.4.
–minor $ brau release --minor releases to 1.7.0.
–major $ brau release --major releases to 2.0.0
–bump $ brau release --bump=3.0.0 releases to 3.0.0

1.2.5 Commit Message Convention

Commit messages must have a label in a predetermined position. Let’s see the default behavior using the example
below.:

Change the boring music playlist

Here you have a new list of music:
- La Grange
- Fuel
- Sad but true

!fix:music

1.2. Usage 5

braulio Documentation, Release 0.3.0

Above, the label is !fix:music. By default, a label must follow the format !{type}:{scope} and be in the
footer. From the previous example the metadata information extracted from the message is as follow.:

• subject: Change the boring music playlist

• type: fix

• scope: music

The subject is important because it appears in the changelog.

The label format and position are customizable via the options label_position and label_pattern. At this moment, a
label can be located only in the header or footer.

To customize the label format use the placeholders {type}, {scope}, and {subject}. {type} is mandatory while
{scope} is optional. {subject} must be used only when the label is in the message header.

A very popular commit message convention is from the AngularJS project. Here a commit message extracted from
their repository.:

chore(travis): use Firefox 47

This commit also adds a new capability to the protractor configs that
ensures that all angularjs.org tests run correctly on Firefox. See
SeleniumHQ/selenium#1202

For Braulio to understand the above message, we can add the following options to the configuration file.

[braulio]
label_position = header
label_pattern = {type}({scope}): {subject}

Note that we use {subject} because the label is in the header and Braulio needs to know where the subject is to extract
it properly. In this case the subject is use Firefox 47, the scope is travis and the commit type is chore.

Important

If the label is located in the footer, {subject} must be omitted since the entire header will be used as the subject of
the commit message.

Since {scope} is optional the next Commit header would be valid:

chore(): use Firefox 47

In this case, the Commit does not have a specific scope, maybe because the code introduced is too broad.

Breaking changes

At this moment, the only way to let Braulio know that a commit introduces incompatible changes to the codebase is
by placing the phrase BREAKING CHANGE or BREAKING CHANGES somewhere in the body of the message.

No matter what type of commit is specified with the commit label, this phrase will instruct Braulio to perform a major
version release.

No matter what type of commit you specify in the commit label, this phrase will instruct Braulio to perform a major
version release.

6 Chapter 1. User’s Guide

braulio Documentation, Release 0.3.0

1.2.6 Setting up pre-releases

To support alpha, beta or any other pre-release version, add them under the section [braulio.stages] of your
project configuration file.

Each option under that section is considered a stage of your project and their value must follow the supported version
string format (most on that later). Those version formats will be used to parse version strings and serialize them back.

[braulio.stages]
dev = {major}.{minor}.{patch}.dev{n}
beta = {major}.{minor}.{patch}b{n}
final = {major}.{minor}.{patch}

The above indicates that the project release cycle has 3 stages: dev, beta, and final and the order in which they may
happen. The name of the options acts as the label of the stage and will be used as the argument for the –stage option
when needed.

The order in which stages are defined matters because it determines which stages are prior to others. The first defined
stages are lower.

You can always release to another stage forward, but not backward. For example, if the current version is 1.5.
0beta6, an attemp to make a dev release 1.5.0.dev0 will fail. If dev and beta were defined in the reverse order,
the release would work.

You can bypass a stage, for example, a release from dev (0.10.0.dev10) stage to a final stage to (0.10.0) will
work.

Braulio does not enforce anything about the literal text of the pre-release segments, so you can have something like
this:

hi = {major}.{minor}.{patch}hello{n}

Here another example with alpha and release candidate stages:

[braulio.stages]
alpha = {major}.{minor}.{patch}a{n}
rc = {major}.{minor}.{patch}rc{n}
final = {major}.{minor}.{patch}

Finally but not less important, the final stage should be always included.

Version string format

The versions string format is defined using placeholders and the available ones are:

• {major} - Major version part.

• {minor} - Minor version part.

• {patch} - Patch version part.

• {n} - Numerical component that defines the order of releases in a pre-release serie.

The first 3 are always mandatory and must be separated by a dot character.:

{major}.{minor}.{patch}

Following then, any word or character can be present. {n} must be at the end of the string pattern. The next examples
are all valid.:

1.2. Usage 7

braulio Documentation, Release 0.3.0

alpha release
{major}.{minor}.{patch}a{n}

Another alpha release style
{major}.{minor}.{patch}a{n}

This have a dot (.) after the patch part
{major}.{minor}.{patch}.dev{n}

Withou a dot (.)
{major}.{minor}.{patch}dev{n}

1.2.7 About placeholders

This tool uses string patterns in many of the options it has, but they are not Regular Expressions.

Instead, it uses placeholders surrounded by curly braces {} as the Python Format String Syntax. Anything that is not
contained in braces is treated as literal text.

They are used not only to render new strings but also to extract information.

For example, tag_pattern is used to find all Git tags that represent a released version and requires the placeholder
{version}. If the pattern is release-{version}, release-2.0.1 will match but released-2.0.1
won’t because the literal part is not equal.

The extracted placeholder information in the above example is 2.0.1. When a new version is released, 2.2.0 for
example, the new tag name will be rendered to release-2.2.0.

1.3 Configuration

Most of the options that let you configure Braulio’s behavior, are available through the command line tool or a Config
file with a few exceptions.

The options provided through the CLI have precedence over those specified in the configuration file.

1.3.1 Config file

Currently, only the file setup.cfg can be used to configure the application. All the options must be under the section
[braulio]. There is a special section: [braulio.stages] which is used solely to configure the stages of the
project.

A config file would look like this:

[braulio]
commit = False
Tag = False
confirm = True

[braulio.stages]
alpha = {major}.{minor}.{patch}a{n}
beta = {major}.{minor}.{patch}b{n}
final = {major}.{minor}.{patch}

8 Chapter 1. User’s Guide

https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/3/library/string.html#format-string-syntax

braulio Documentation, Release 0.3.0

1.3.2 Options

Next, we have a table with all the options for the release subcommand. If an option is not available through an input
method, the cell will be empty.

CLI config file Descriptions
–major Major version bump.
–minor Minor version bump.
–patch Patch version bump.
–bump Bump to a given version arbitrarily.
–commit / –no-commit commit Enable/disable release commit
–message message Customizes commit message.
–tag / –no-tag tag Enable/disable version tagging.
–changelog-file changelog_file Specify the changelog file.
–label-position label_position Where the label is located in the commit message.
–label-pattern label_pattern Pattern to identify labels in commit messages.
–tag-pattern tag_pattern Pattern for Git tags that represent versions
–current-version current_version Manually specify the curren version.
–stage Select a stage where to bump
–merge-pre Merge pre-release changelogs.
-y confirm Don’t ask for confirmation
files (argument) files Don’t ask for confirmation
–help Show this message and exit.

bump

CLI Config File Default
--bump

Takes a valid version string and bump the project version.

major

CLI Config File Default
--major

Perform a major release bumping the major part of the current version.

minor

CLI Config File Default
--minor

Perform a major release bumping the major part of the current version.

1.3. Configuration 9

braulio Documentation, Release 0.3.0

patch

CLI Config File Default
--patch

Perform a major release bumping the major part of the current version.

current_version

CLI Config File Default
--current-version current_version

Determines the current version of the project. If this option is present in the configuration file, it will be updated on
each new release.

tag_pattern

CLI Config File Default
--tag--patern tag_pattern v{version}

Parse and render Git tag names.

It is used to find Git tags that mark a release, as well as to render tag name for new releases.

The pattern string must have the placeholder {version}, which determines where a version string is located in a
tag name.

Examples:

The tag pattern version{version} would match version1.0.0. The tag pattern release-{version}
would match release-1.0.0.

As stated above, any time a new version is released, the same pattern will be used to render the new Git tag name.

label_position

CLI Config File Default
--label-position label_position footer

Determines where the commit analyzer must look for commit labels. The available values are header and footer.

label_pattern

CLI Config File Default
--label-pattern label_pattern !{type}:{scope}

The format of label inside commit messages. This uses the next placeholders to extract metadata information.:

• {type}: The type of the commit (fix, feat, chore, etc). Required.

10 Chapter 1. User’s Guide

braulio Documentation, Release 0.3.0

• {scope}: The scope where a commit belong. Optional.

• {subject}: The subject of the message. Required when the label is located in the header.

commit

CLI Config File Default
--commit/--no-commit commit True

Enable/disable commit of the changes produced by a version bump. If this is enabled, it will commit only the changelog
file and the files provided through the files option.

tag

CLI Config File Default
--tag/--no-tag tag True

Enable/disable a release tag after a version bump.

message

CLI Config File Default
--message message “Release version {new_version}”

If the release commit is enabled, this is used for the message.

This is a template string containing replacement fields. The available fields are {new_version} and {current_version}.
{new_version} is mandatory, while {current_version} is optional.

changelog_file

CLI Config File Default
--changelog-file changelog_file

Path to the changelog file.

files

CLI Config File Default
files (argument) files

List of files to update with a new version string.

Note that in the case of the CLI this is a positional argument and must be place at the end of the command.

$ brau release --bump=4.0.0 file1.py file2.py folder/file3.py

1.3. Configuration 11

braulio Documentation, Release 0.3.0

Each file path must be separated by an space.

Through a configuration file, each file path must be in a new line like the example belog.

[braulio]
files =

file1.py
file2.py
folder/file3.py

stage

CLI Config File Default
--stage

Determines in what stage a new release must be made.

stages

CLI Config File Default
[braulio.stages] final = {major}.{minor}.{patch}

Only available through a configuration file, this determines the stages of a project development cycle.

By default the only stage defined is final, which must always present:

[braulio.stages]
final = {major}.{minor}.{patch}

For more information, read the Setting up pre-releases section.

1.4 Installation

1.4.1 Stable release

To install braulio, run this command in your terminal:

$ pip install braulio

This is the preferred method to install braulio, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.4.2 From sources

The sources for braulio can be downloaded from the Github repo.

You can either clone the public repository:

12 Chapter 1. User’s Guide

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/mbarakaja/braulio

braulio Documentation, Release 0.3.0

$ git clone git://github.com/mbarakaja/braulio

Or download the tarball:

$ curl -OL https://github.com/mbarakaja/braulio/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

1.5 History

1.5.1 0.3.0 (2018-08-22)

Bug Fixes

• release

– Abort when a lower version is passed to –bump

– Stop aborting when user inputs No to confirmation prompt

– Ensure –bump works with versions without minor and patch parts.

– Validate tag_pattern value

• git - Fix Tag’s __repr__ and __str__ methods

Features

• release

– Add –merge-pre option

– Add –stage option

– Support pre-release versions

– Add option to customize the commit message

– Add option to specify the current version

– Add support to custom git tag names

– Add support to custom commit message conventions

• cli - Add –version option to output current version

1.5.2 0.2.0 (2018-07-25)

Bug Fixes

• changelog - Fix release markup being inserted in the wrong place

1.5. History 13

https://github.com/mbarakaja/braulio/tarball/master

braulio Documentation, Release 0.3.0

Features

• release

– Show useful info while running release subcommand

– Add support to custom change log file names

– Support version string update on selected files

• init - Add interactive config and changelog files creation

1.5.3 0.1.0 (2018-07-13)

Features

• release

– Add –no-commit and –no-tag options

– Add options for manual version bump

14 Chapter 1. User’s Guide

	User’s Guide
	Foreword
	Usage
	Configuration
	Installation
	History

